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Abstract 

A computational thermal analysis is presented for a hardened subminiature 
telemetry sensor system (HSTSS) mounted in the tracer well of a large 
caliber fin-stabili:zed kinetic energy projectile. The HSTSS discussed here is 
designed to provide a record of roll history. The in-bore and in-flight 
projectile surface heat transfer conditions are adapted from two previous 
studies in numerical interior ballistic and computational aerodynamics. The 
combined heat transfer model is used in the present study to provide 
boundary conditions for computations of surface and in-depth transient 
thermal response of the HSTSS components. A two-dimensional 
axisymmetric multiple material numerical approach is used to model the 
HSTSS and projectile base over the complete in-bore and in-flight event. A 
one-dimensional numerical approach with a surface melt condition is used 
to model the protective plastic radome on the HSTSS while in bore. A one- 
dimensional analytical approach for high-speed melting is presented and 
compared to the numerical model. The analysis allows a pre-test evaluation 
to be made of the thermal integrity of the HSTSS design for a large caliber 
launch and flight environment. 
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1.    INTRODUCTION 

The Hardened Subminiature Telemetry and Sensor System (HSTSS) program within the 

U.S. Army is centering on the identification and demonstration of new technologies to support 

gun-launched munition test measurements (D'Amico, Burke, Faulstich, & Hooper 1996). 

One area of focus is the development of an HSTSS instrumentation package to mount in the 

base of a conventional large caliber fin-stabilized kinetic energy (KE) projectile. The HSTSS 

may be designed to provide on-board measurements of projectile attitude, accelaration, or 

internal diagnostics such as pressure and temperature. The data will be telemetered to a 

ground station while the projectile is in flight, providing direct real-time data critical to the 

development of new munitions, particularly smart munitions. 

A new generation of rugged subminiature components has been a focus of study (Burde- 

shaw k Clay 1991; Davis 1996a, 1996b). The on-board HSTSS instrumentation must survive 

the hostile launch and flight environments associated with large caliber weapons systems. 

The present study addresses the thermal viability of a current HSTSS design subjected to 

the in-bore and in-flight heating of such a system. Numerical simulations of interior bal- 

listics, aerodynamics, and transient heat conduction are combined to predict the thermal 

response of the HSTSS components. The objectives are to (1) make a pre-flight prediction 

of the in-bore and in-flight thermal integrity of the HSTSS design and (2) identify HSTSS 

components most likely to be sources of thermal failure, should it occur. 

The in-bore and in-flight projectile surface heat transfer conditions are adapted from 

two separate studies in numerical interior ballistics and computational aerodynamics. The 

resulting combined heat transfer model is used in the present study to provide boundary 

conditions for computations of surface and in-depth transient thermal response of the HSTSS 

components. A two-dimensional (2-D) axisymmetric multiple material numerical approach 

is used to simulate the thermal response in the HSTSS over the complete in-bore and in- 

flight event. A one-dimensional (1-D) numerical approach with a surface melt condition is 

used to simulate the thermal response and surface regression of the protective radome on 

the HSTSS while in bore. A 1-D analytical model for high-speed melting is presented and 

compared to the 1-D numerical model. Thermal survivability criteria appropriate for the 

HSTSS components are compiled and applied to the numerical results to characterize the 

thermal viability of the current design. 



2.    PROJECTILE AND HSTSS CONFIGURATIONS 

A candidate projectile for testing the HSTSS is a 120-mm configuration known as the 

Hollow Aluminum Training Round (HATR), shown in Figure 1. Typical of long rod KE 

configurations, the HATR is a fin-stabilized, discarding sabot design. The HATR projectile 

possesses a conical nose section followed by a cylindrical section of constant diameter 37.4 mm 

(1 caliber). The total length is 13 calibers, with sabot grooves covering much of the cylindrical 

portion. The projectile configuration consists mostly of aluminum and weighs approximately 

0.91 kg, rendering it much lighter than fielded 120-mm projectiles and with a significantly 

reduced maximum range. The HATR is designed as a ballistic match for the M865 training 

round. Unpublished Weibel radar data from HATR test firings show the HATR to have 

roughly the same velocity history as the M865. The M865 velocity at the muzzle and at 

3-km range are given by Department of the Army Firing Table FT-120-D-1 as 1700 m/s and 

677 m/s, respectively, and the flight time is given as 2.7 seconds. The in-bore time of the 

HATR is assumed to be 5.5 ms, compared to 7 ms for the M865. 

Figure 1. HATR Projectile. 

The six-fin hub is an off-the-shelf component taken from the M735 projectile and is com- 

posed of aluminum with an annodized aluminum oxide protective coating. A threaded tracer 

well is located in the fin hub base. A tracer is used in both testing and actual engagement to 

aid in the visual spotting of the fired round. For HSTSS applications, the tracer is replaced 

by the instrumentation package. The tracer well is centered on the projectile axis and is 

approximately 21 mm in diameter and 25.7 mm in depth. 



The present HSTSS design provides a measurement of roll history, and the major com- 

ponents are illustrated in Figure 2. One of the two circuit boards contains a g-switch, 

transmitter, amplifier, and voltage regulator; the other is a giant magneto-resistive ratio 

(GMR) circuit board. The two circuit boards and battery are encased within the threaded 

steel insert using Stycast 1080 SI, an electronics potting epoxy. The antenna is a 0.76-mm 

thick copper-clad disk made of Duroid 6010 and is connected to the electronics via solder 

connections near the projectile axis. The rearward disk of copper cladding abuts the 1.52- 

mm thick Duroid 5880 radome cap. The radome is in direct contact with the propellant 

gases during launch and is meant to shield the instrumentation package from thermal and 
mechanical damage. 
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Figure 2. HSTSS Instrumentation Package. 

The simplified HSTSS geometry used in the thermal analysis is shown in Figure 3. The 

fins are not included in the thermal analysis, as will be discussed, and are omitted from the 

figure. The individual electronic components, including circuit boards, battery, and solder 

connections, etc., are modeled as the Stycast 1080 SI in which they are encased. It is assumed 

that the HSTSS is a solid mass without air spaces, represented by seven single-material zones 
with a total of six materials. 



, * ANTENNA CLADDING: COPPER 

• STEEL INSERT: GENERIC STEEL 

• ELECTRONICS REGION: 
STYCAST 1090 SI 

• FIN HUB: ALUMINUM 

• ANTENNA BASE: DUROID® 6010 
• RADOME: DUROID® 5880 

Figure 3.   Simplified HSTSS Geometry Model. 

Table 1 lists the HSTSS components and their physical and thermal properties of interest, 

all of which are assumed constant in the ensuing analysis. The critical temperature, Tcriu 

for each material is the melt temperature, except for the battery, in which case, the critical 

temperature is the estimated operational threshold temperature. The Duroid and Stycast 

materials have small conductivity and diffusivity compared to the metals and are expected 

be insulative. The radome has the additional characteristics of low melt temperature and 

large latent heat of melt, rendering it a prospective ablative shield. The solder used in 

the electronic connections is not modeled in the analysis, but its comparatively low melt 

temperature is a survivability criterion that must be considered. The aluminum oxide hard 

coat on the fin hub is excluded from the analysis and is omitted from the table. 

Table 1. Physical and Thermal Properties of HSTSS Components 

Component Material P 

(kg/m3) 

k 

(J/kg/K) 

cp 

(J/kg/K) (m2/K) 

-t crit 

(K) 

L 

(kJ/kg) 

Fin Hub Aluminum 2790 177.0 875 7.25xl0~5 933 Not used 

Threaded Insert Steel 7820 45.0 434 1.33xl0-5 1800 Not used 

Potting Stycast 1080 SI 700 0.19 1256 2.16xl0-7 380 Not used 

Antenna Copper 8930 401.0 385 1.17xl0-4 1358 Not used 

Antenna Potting Duroid 6010 2900 0.41 1000 4.04xl0-7 623 Not used 

Radome Duroid 5880 2200 0.26 960 3.38xl0~7 623 1.16xl04 

Batterv N/A Not used Not used Not used Not used 505 Not used 

Solder Lead & Tin Not used Not used Not used Not used 511 Not used 



SURFACE HEAT TRANSFER MODELS 

3.1     In-Bore Surface Heat Transfer 

The in-bore projectile surface heat transfer characteristics were obtained from a separate 

analysis involving the interior ballistic code XKTC (Gough 1990) and the in-bore heat trans- 

fer code ARL XBR-2D (Conroy 1991; Crickenberger, Talley k Talley 1994). The XKTC 

code models a transient multiple phase reacting flow field with convective ignition to produce 

interior ballistic parameters of gas and propellant state and velocity, propellant position, as 

well as projectile motion. Usually, the spatially and temporally varying core flow parameters 

of gas pressure, temperature, and velocity from XKTC are used as input to the XBR-2D 

code to compute gun tube wall temperature profiles. In order to compute the conditions on 

the fin hub surface, a transformation from Eulerian to Lagrangian coordinate systems was 

implemented. The projectile fin was then treated as an immobile surface and the gun tube 

wall treated as a moving surface. The XKTC computation required approximately 30 sec- 

onds on a Silicon Graphics Inc. (SGI) Challenge computer using a single R8000 processor. 

The XBR-2D computation required approximately 1 second on the same computer. These 

times reflect the computer usage for the simulation of the in-bore portion of the event only. 

The in-bore surface heat transfer characteristics were generated for the U.S. Army M865 

projectile. The results were adapted for use in the present study, considering that the HATR 

uses the same cartridge and class of propellant as the M865. Figure 4 shows the computed 
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Figure 4.   In-Bore Surface Heat Transfer Coefficient History. 



heat transfer coefficient, h, acting on the fin hub. The original computational result consists 

of heat transfer coefficient histories at several locations on the fin hub, and the history shown 

in Figure 4 is representative of the overall behavior. The heat transfer coefficient undergoes 

several large fluctuations, with the maximum value of 55 kW/m2/K reached about 3 ms 

into the event. Figure 4 also shows a piecewise distribution that was constructed and used 

in the ensuing heat conduction analysis. This was done as a quick, conservative, manual 

implementation of the heat conduction modeling software, although the original history 

could have been implemented in a more precise fashion. In addition, the distribution used 

in the thermal analysis was prescribed to decrease approximately 1 to 1.5 ms earlier than 

that of the interior ballistics analysis to account for the reduction in in-bore time. 

Figure 5 shows the computed in-bore gas temperature, Tg, acting on the fin hub. The 

gas temperature experiences a sudden rise to a maximum of about 3300 K after propellant 

ignition, then slowly declines to a value of about 2400 K at 7 ms into the event. As was the 

case with the heat transfer coefficient, a quick, conservative, manual implementation of the 

gas temperature history was used. As shown in the figure, a constant value of 3400 K was 

used in the present thermal analysis. 

T„(K) 

   Interior Ballistics Simulation 
 Used in Thermal Analysis 

1 2       3       4       5       6       7 
Time (ms) 

Figure 5.   In-Bore Gas Temperature History. 

The heat transfer coefficient and gas temperature histories are used in the present analysis 

to generate the local instantaneous heat transfer rate per unit area, q, from 

q = h(Taw — Twaii) (1) 

in which Twaii is the local instantaneous wall temperature and Taw is the adiabatic wall 

temperature, assumed to be equal to Tg. 



3.2    In-Flight Surface Heat Transfer 

The in-flight (i.e., aerodynamic) heat transfer coefficient distributions were obtained from 

a separate analysis involving a three-dimensional (3-D) parabolized Navier-Stokes (PNS) 

computational fluid dynamics code. The PNS code models turbulent, viscous, steady, su- 

personic attached flow over the projectile using a space-marching finite difference technique. 

The numerical solution is advanced downstream by numerically integrating in the main flow 

direction, requiring about 1 central processing unit (CPU) hour on a Cray Y-MP computer 

per solution for this class of finned configurations. The PNS technique, because it is space 

marching, is significantly more computationally efficient than time-marching techniques. 

The PNS approach has been used extensively in house to study the aerodynamics and heat 

transfer characteristics of large caliber finned KE projectiles. Details of the technique and 

an informative synopsis of its application to fin-stabilized KE projectiles are presented by 

Guidos and Weinacht (1993). 

The in-flight heat transfer rates are obtained from steady state flow solutions generated 

using the PNS numerical method. The computations are performed by specifying a constant 

wall temperature boundary condition, yielding a distribution of surface heat transfer rate. 

The in-flight heat transfer coefficient used in the present thermal analysis was adapted from 

computations for the M735 and M829 projectiles (Guidos & Weinacht 1993). Those results 

showed that the in-flight heat transfer coefficients on the cylinder portion of the fin hub are 

similar for the two projectiles and only slightly dependent on velocity in the speed regime 

of interest here. The in-flight heat transfer coefficient distribution on the cylinder portion of 

the M829 projectile at a velocity of 1670 m/s, from Guidos and Weinacht (1993), is depicted 

in Figure 6. Using this figure as a guide, a value for h of 1600 W/m2/K was selected as the 

aerodynamic heat transfer coefficient to apply on the fin hub surface, excluding the base. 

An upper boundary on h, the value was held constant with respect to time in the present 

analysis. 

The adiabatic wall temperature distributions were obtained by prescribing a free-stream 

temperature recovery factor, 77, consistent with turbulent boundary layer flow, i.e., 

Ta^T^l+rjt^Ml) (2) 

in which T^ is the free-stream temperature, M^ is the free-stream Mach number, 7 is 

the ratio of specific heats (taken to be 1.4). A value of 0.9 was used for 77. Equation 

(2) yields values of Taw of 1289 K at the launch velocity and 920 K at 3-km range for 

the HATR projectile. A linear variation with respect to time was assumed in the heat 

conduction computations. The values of Taw provided by Equation (2) have been shown to 



be comparable to those of the PNS technique everywhere except near the fin leading edges 

for this class of problem (Guidos &, Weinacht   1993). 

Equation (1) is then used during the heat conduction analysis to extract the instantaneous 

heat transfer rate from h, Taw, and Twati. The exception is the in-flight surface heat transfer 

condition for the projectile base, which is prescribed to be adiabatic after the projectile exits 

the gun tube. 
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Figure 6. Aerodynamic Surface Heat Transfer Coefficient, M829 Projectile, 7=1670 m/s. 

4.    IN-DEPTH THERMAL RESPONSE MODELS 

4.1     2-D Numerical Model of Multiple Material HSTSS 

A 2-D analysis was conducted for the multiple material HSTSS configuration using Inte- 

grated Design and Analysis Software (IDEAS) developed by Structural Dynamics Research 

Corporation, Milford, OH. IDEAS uses a multiple material, multiple zone, finite volume 

formulation to model heat conduction within a generalized geometry. The 1-D numerical 

and analytical results for steel rod convective heating presented by Guidos (1995) were used 

to validate the IDEAS software before the HSTSS analysis. The computational time for the 



HSTSS configuration was approximately 2 hours on an SGI Indigo 2 workstation using a 

single R4400 processor for the 3-second launch and flight event. 

The simplified 2-D axisymmetric HSTSS configuration described earlier was used as a 

basis for constructing the computational grid, shown in Figure 7. The grid is unstructured, 

consisting of 7053 elements and 5093 nodes. Grid spacing at the projectile surface is approx- 

imately 0.14 mm. The full length of the fin hub is not modeled; rather, only the rearmost 

55 mm are included in the grid. This forward-most boundary is prescribed to be held at a 

constant temperature of 298 K. The initial temperature throughout the model is prescribed 

to be 298 K. 

SS.1 mm 

Figure 7. 2-D Axisymmetric Grid. 



4.2     1-D Numerical Model of Radome 

A 1-D numerical approach is useful for determining the thermal response of the radome 

because the surface grid spacing and resulting computer time required to resolve the thermal 

gradients are substantially more demanding than elsewhere in the fin hub. As will be shown, 

the 1-D numerical analysis shows that the radome surface melts during the in-bore launch 

phase, requiring a surface melt boundary condition not available in the version of IDEAS 

used here. 

The 1-D numerical heat conduction analysis was performed in the present study using 

a single material code described by Dwyer (1990); Sturek, Dwyer, and Ferry (1990); and 

Yam (1991). The scheme is a time-accurate, iterative, implicit, finite volume technique cast 

in time-varying generalized coordinates. For this study, a 2-D version of the code with a 

surface melt condition was used in a 1-D mode. The code had been previously validated by 

comparing to 1-D analytical results for steel rod convective heating with no melting (Guidos 

1995) and 1-D numerical results for M256 gun tube heating and melting (Weinacht and 

Conroy 1996). 

Melting is modeled in the 1-D code by assuming that the melted material and heat 

contained within are transported away adiabatically. The ablative boundary conditions, 

implemented when the surface temperature reaches the melt temperature, are the same as 

those presented in Weinacht and Conroy (1996), i.e., 

Twall = Tmelt (r) 

pLjt = h(Taw - Twall) - k^ (4) 

in which the surface temperature, TwaU, is set equal to the melt temperature, TmeH. The 

density is p, the latent heat of melt is L, the surface regression rate is ds/dt, and the 

temperature gradient at the surface is dT/dy. The complete system of equations is solved 

iteratively at each time step because the regression rate is an additional unknown. 

The 1-D numerical result was generated assuming a 2-mm thick radome and using 100 

grid points. The minimum grid spacing required at the surface to resolve the temperature 

gradient was 0.05 micrometer, much smaller than the 0.14-mm spacing used in the 2-D nu- 

merical analysis. The 1-D numerical simulation was performed using the same heat transfer 

coefficient and adiabatic wall temperature histories as the 2-D results above. The simulation 

was performed for the in-bore part of the event and required approximately 1 hour of CPU 

time on an SGI Challenge computer using a single R8000 processor. 

10 



4.3    1-D Analytical Model of Radome 

A simple 1-D analytical model was formulated to perform an additional calculation of 

radome surface melting. It is assumed that the amount of heat conducted into the material 

is small compared to the amount of heat lost because of surface melting. As in the 1- 

D numerical approach discussed before, it is also assumed that the melted material and 

the heat contained within are transported away adiabatically. The resulting heat balance 

equation is 

pL-T7 = h(Taw - Tmelt) ~ pCp(Tmelt ~ Ti)~ (5) 

in which the initial temperature is T,-. Equation (5) can be re-arranged to solve for the melt 

depth, 6, i.e., 
r I I f * h{-l-aw ~ -I-melt) ,, ,c\ 
8 = s\tt-s\ti=  T-^dt (6) 

Jti   p[L + cp(lmeit - li)\ 

which can be solved analytically or integrated numerically, depending on the complexity of 

h and Taw as functions of t. 

5.    RESULTS 

Temperature contours from the 2-D axisymmetric model are shown in Figure 8 at times 

of 1, 2, and 3 seconds, respectively. The contours show that heat reaching the interior of 

the HSTSS is transported primarily from the outer fin hub rather through than the base. 

In this respect, the Duroids and Stycast appear to be effective heat insulators, although the 

radome thermal response is examined in more detail subsequently. The electronics region is 

minimally affected by the heat input throughout the 3-second event, except near its outer 

edge. The heat conducted from the outer fin hub through the rearward copper cladding of 

the antenna is likely over-predicted because the computational model is constructed with 

both copper disks in direct contact with the steel insert. In the actual configuration, the 

rearward copper cladding and the steel insert are separated by 3 mm of Duroid 6010. 

Figure 9 shows locations of four temperature monitor points used here to summarize the 

critical thermal response of the HSTSS. The fin hub surface monitor point is located 18 mm 

from the base. The battery monitor point is located 21 mm from the projectile base and 

2 mm from the outer edge of the electronics region. The antenna monitor point is located on 

the rearward copper antenna disk, on the projectile axis, near the solder connections. The 

radome surface monitor point is also located on the axis, focusing attention on the ablation 

process that is anticipated during launch. 

11 
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Figure 8.   Computed Temperature Contours at 1, 2, and 3 seconds. 
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Figure 9.   Temperature Monitoring Points. 

The computed thermal response at the fin hub surface monitor point is shown in Figure 

10. The 2-D axisymmetric result shows the maximum in-bore temperature at the fin hub 

surface monitor point to be approximately 565 K. Upon gun tube exit, the temperature is 

predicted to fall to approximately 375 K. The in-flight temperature is predicted to increase 

monotonically to approximately 620 K at 3-seconds into flight. 
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Figure 10.   Computed Temperature Response at Fin Hub Surface Monitor Point. 
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The computed thermal response at the battery monitor point is shown in Figure 11. 

The 2-D axisymmetric result shows that the battery is far enough removed from the effects 

of massive in-bore heating that no abrupt temperature increase occurs. At approximately 

400 ms, the temperature begins to noticeably increase to a value of 340 K at 3 seconds into 

flight. This is safely below the lead/tin solder melt temperature and the battery operational 

threshold temperature, but only 40 K below the Stycast 1080 SI potting melt temperature. 

Depending upon the precise thermal response at the outer edge of the electronics section, 

some local melting of the potting could occur, although late enough into the 3-second flight 

as to not be a concern. 

0.0 1.0 2.0 
Time (s) 

Figure 11.   Computed Temperature Response at Battery Monitor Point. 

The computed thermal response at the antenna monitor location is shown in Figure 12. 

As was the case with the battery monitor point, the 2-D axisymmetric result shows that the 

antenna is far enough removed from the effects of massive in-bore heating that no abrupt 

temperature increase occurs. At approximately 200 ms, the temperature begins to increase 

steadily to a value of 460 K at 3 seconds into flight. This is below the Duroid 5880, copper, 

and lead/tin solder melt temperatures. The antenna thermal response was shown in the 

contour plots to be determined by the heat conducted through the steel insert rather than 

through the radome. 

14 
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Figure 12.   Computed Temperature Response at Antenna Monitor Point. 

The 2-D axisymmetric model showed the radome surface temperature to rapidly increase 

above the Duroid 5880 melt temperature while still in bore. It also showed that no heat was 

transported through the radome to the antenna. However, a closer examination of the 2-D 

result revealed that the grid spacing was inadequate to resolve the large thermal gradient 

beneath the radome surface. A more detailed analysis was performed on the radome using 

the 1-D numerical approach with a surface melt condition. 

Figure 13 shows the computed in-bore thermal response of the radome surface monitor 

point using the 1-D numerical model. As already mentioned, the 1-D result employs grid 

spacing small enough to resolve the large temperature gradient near the radome surface. The 

1-D result shows that the surface temperature abruptly increases to the melting temperature 

of 623 K within 1 ms and that melting occurs for approximately 5 ms. 

Figure 14 shows the computed temperature distribution within the radome at different 

in-bore times using the 1-D numerical model. When the temperature gradient is largest, the 

thermal layer is less than 10 fim thick. As the projectile exits the gun tube, the maximum 

temperature is 450 K and the thermal layer is less than 30 /xm thick. After the projectile 

exits the gun tube, an adiabatic surface heating condition is assumed to exist on the radome 

surface, effectively halting heat flow into the radome. The thermal layer within the radome 

is orders of magnitude thinner than the radome itself. It may be concluded that the thermal 

energy contained in the radome is insufficient to affect the antenna. 

15 
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Figure 13.   Computed Temperature Response at Radome Surface Monitor Point. 
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Figure 14.   Computed Temperature Distribution in Radome. 
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The result shows that the Duroid 5880 radome is an effective ablative insulator in this case. 

Despite the fact that the 2-D model does not contain adequate grid resolution or a melting 

condition, it correctly portrays the fact that no heat is conducted through the radome to 

the antenna. If the melt depth of the radome were of no interest, an adiabatic boundary 

condition on the radome surface would suffice for predicting the thermal response of the 

HSTSS interior components. 

Figure 15 shows the predicted in-bore melt depth of the radome as a function of time 

for both the 1-D numerical and 1-D analytical models. The methods agree to within 3% at 

5.5 ms into the event and show the in-bore melt depth of the radome to be approximately 

0.55 mm, less than the 1.52-mm total radome thickness. 

0.8 j 
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Figure 15.   Computed Radome Melt Depth. 

Figure 15 also demonstrates the usefulness of the 1-D analytical approach for estimat- 

ing the melt depth for this radome material during large-caliber launch conditions. The 

assumption that the amount of heat conducted into the material is small compared to the 

amount of heat lost because of surface melting appears to be valid here. The 1-D analytical 

model provides a fast engineering approach for tailoring the radome thickness at gun tube 

exit and thereby influencing the in-flight dielectric properties of the radome, an important 

consideration for optimum antenna functionality. 
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6.    CONCLUSION 

A computational thermal analysis has been presented for an HSTSS mounted in the 

tracer well of a large caliber KE projectile. The in-bore surface heat transfer model was 

taken from results of a numerical interior ballistics study. The in-flight surface heat transfer 

model was taken from the results of a numerical aerodynamics study. The transient thermal 

response within the projectile fin hub and HSTSS was computed using three approaches: 

a 2-D axisymmetric numerical model, a 1-D numerical model, and a 1-D analytical model. 

Thermal survivability criteria were compiled and applied to the results to characterize the 

thermal viability of the current design. 

The electronics region is predicted to reach temperatures that are below the melt temper- 

atures of the potting and the solder connections, as well below the operational temperature 

threshold of the battery. The outer edge of the potting is predicted to reach temperatures 

only 40 K below its melt temperature late into the flight and could experience some local 

melting, depending on the precise thermal response. The antenna is predicted to reach 

temperatures below the melt temperatures of the Duroid 6010, copper, and the solder con- 

nections. The radome is predicted to reach its melt temperature within 1 ms of the 5.5 ms 

in-bore event, but the total ablation depth of 0.5 mm is less than the 1.52-mm total radome 

thickness. The radome serves as an effective insulator, as the ablation process removes heat 

from the system that could otherwise be transported to the antenna. 

The use of the 2-D multiple material heat conduction model, along with the 1-D numerical 

and analytical models that include a surface melt condition, provides a fast computational 

pre-test design methodology. In addition, the 1-D analytical prediction for radome melt 

depth is shown to agree with the 1-D numerical prediction to within 3% at gun tube exit. 

The 1-D analytical model provides a fast engineering approach for tailoring the radome 

thickness at the gun tube exit and thereby influences the in-flight dielectric properties of the 

radome, an important consideration for optimum antenna functionality. At the time of this 

writing, no test projectiles had yet been fired. The thermal analysis herein suggests that the 

present HSTSS design will survive the in-bore and in-flight environments associated with a 

large-caliber gun system without experiencing catastrophic thermal failure. 
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LIST OF SYMBOLS 

Cp specific heat 

d reference diameter 

h heat transfer coefficient 

temperature 

k thermal conductivity 

L latent heat of melt 

M Mach number 

q heat transfer rate per unit area 

rf free-stream temperature recovery factor 

s surface location in fixed coordinate 

to surface 

system perpendicular 

T temperature 

t time 

V projectile velocity 

x,y spatial coordinates 

Greek Symbols 

S surface melt depth 

7 ratio of specific heats 

P density 

Subscripts 

aw adiabatic wall condition 

crit critical condition 

f final condition 

9 gas condition 

i initial condition 

melt melt condition 

wall wall condition 

oo free-stream condition 
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